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ABSTRACT
We propose Alternating-time Dynamic Logic (ADL) as a
multi-agent variant of Dynamic Logic in which atomic pro-
grams are replaced by coalitions. In ADL, the Dynamic
Logic operators are parametrised with regular expressions
over coalitions and tests. Such regular expressions describe
the dynamic structure of a coalition. This means that, when
moving from Dynamic Logic to ADL, the focus shifts away
from describing what is executed and when, toward describ-
ing who is acting and when. While Dynamic Logic provides
for reasoning about complex programs, ADL facilitates rea-
soning about coalitions with an inner dynamic structure, so-
called coordinated coalitions. The semantics for such coali-
tions involves partial strategies and a variety of ways to com-
bine them. Different combinations of partial strategies give
rise to different semantics for ADL. In this paper, we mainly
focus on one version of the semantics but we provide a dis-
cussion on other semantic variants of ADL together with
possible syntactic extensions. We see ADL to be suitable
for the specification and the verification of scheduling and
planning systems, and we therefore present a model check-
ing algorithm for ADL and investigate its computational
complexity.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—modal logic; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—multia-
gent systems

General Terms
Theory

Keywords
Logic for MASs, Dynamic Logic, Partial Strategies, Model
Checking

1. INTRODUCTION
Following Alternating-time Temporal Logic (ATL) [4], log-

ics for strategic abilities have received much attention in
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multi-agent systems. Their purpose is to provide formal
methods for reasoning about dynamic systems of interact-
ing and autonomous agents.

However, the notions of cooperation and of abilities are of-
ten idealised. First, in general, strategies are taken as total:
agents are allowed to plan their actions for every situation
they could encounter. Second, it is possible to reason about
the abilities of a coalition, but one has no way to describe
how the agents in the coalition coordinate.

We investigate abilities of what we name coordinated coali-
tions. A coordinated coalition describes a set of agents that
act as is specified by a schedule. The strategies of a sched-
uled coalition are naturally partial strategies that are defined
whenever a member of the coalition is asked to act by the
schedule.

The logic.
In this paper, we introduce Alternating-time Dynamic

Logic (ADL). It brings new perspectives in logics of agents
at the frontier between dynamic logics (Propositional Dy-
namic Logic PDL) and alternating-time logics (Coalition
Logic CL [7], ATL).

First, ADL can be seen as a variant of Dynamic Logic
replacing atomic programs with coalitions which yields an
abstraction away from particular actions toward acting enti-
ties. While in Dynamic Logic the complex programs are reg-
ular expressions over atomic programs, in ADL the Dynamic
Logic operators are parametrised with regular expressions
over coalitions. The latter can be seen as representing dy-
namic coalitions in the sense that a regular expression over
coalitions describes how the initial coalition changes over
time. For instance, we understand the sequence A; B; C of
three coalitions as describing how a coalition changes over
time (the construct ; is the sequential operator): the initial
coalition is A that is changing to B after one time step which
in turn is changing to C after the second time step.

Second, ADL can be seen as a variant of Coalition Logic
with coordinated coalitions. Within a coordinated coali-
tion, the members act according to a schedule which de-
fines the inner dynamics of the organisation of the coalition.
The ADL-formula 〈A; B; C〉ϕ means that property ϕ can be
achieved when the coalitions A, B and C are acting in turns
in this order, and this, no matter what (B∪C)\A do at the
first step, whatever (A ∪ C) \ B do at the second step and
whatever (A ∪ B) \ C do at the third step.

Like in PDL, these patterns of behaviour can be more
sophisticated than simple sequences. They can specify an
indeterminate coalition to act using the construct ‘�’. We
can also specify iterations of acting coalitions using ‘∗’. Fi-
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nally, the test operator ‘?’ permits to test the truth value of
a formula.

It allows to obtain more complex schedules by combining
the different constructs. The formula

〈(A; B)∗〉ϕ
states that “the coalition A ∪ B has a strategy to achieve ϕ
consisting in A and B acting alternatively for an indetermi-
nate time”.

We can also characterise conditional schedules:

〈(ψ?; A) � (¬ψ?; B)〉ϕ
“the coalition A∪B can ensure ϕ by lending the responsibil-
ity to act to A if ψ is true and by letting the responsibility
to B otherwise”.

Remark 1.1. It is important to make the difference be-
tween the schedule A ∪ B, that is equivalent to the atomic
schedule containing the agents of A and B, and A�B, that
is the compound non-deterministic schedule.

Talking about partial strategies.
To model superposing actions of agents, ADL-formulae

are evaluated over alternating transition systems (ATS),
which are the models for ATL. We will use ATSs with end-
points, where a maximal computation can be finite.

Unlike in ATL, though, strategies in ADL are partial.
Consider again the formula 〈A; B; C〉ϕ. At the moment
of evaluation of the formula, we will be looking for partial
strategies in which the responsibility of acting to obtain ϕ is
incumbent upon the coalition A at first, upon the coalition
B next and upon C to finish. We then can see the union
of A, B and C becomes a coordinated coalition. They have
to act together in a concerted way to achieve ϕ, by follow-
ing a pattern of behaviour that is specified by the schedule
A; B; C.

It is important to note that though we use regular ex-
pressions like in PDL, our logic is not purported to reason
explicitly about actions or strategies. The strategies at play
are not themself represented in the object language of ADL.
A regular expression over coalitions can be interpreted as a
collection of partial strategies sharing a particular structure.
It enables the reasoning about structures of partial strate-
gies.

In the logic ATL, the formula 〈〈A〉〉Φ means that the agents
in A have a (total) strategy to ensure the temporal prop-
erty Φ. One approach to the reasoning about partial strate-
gies within an ATL-like framework, is to explicitly specify
the size of the partial strategies we are considering. In the
logic Alternating-time Temporal Logic with Bounded Mem-
ory (ATLBM) [2], the formula 〈〈A〉〉nΦ is intended to capture
that A have a partial strategy – specifying what they do in
no more than n states – to ensure Φ.

We are in need of a logic where we can distinguish the
efficiency of partial strategies that may differ in their in-
ner structure. Here, we propose ADL as one possible ap-
proach to the study of partial strategies, by providing com-
plex modalities describing the dynamics of a coalition. For
instance, the formula 〈({a, b} � {c}); {b}〉Φ will trigger par-
tial strategies defined in at most two states. At the first
state, the strategies will be defined only for agents a and b,
or only for agent c. At the second state, the strategy will be
specified only for agent b. Unlike in ATLBM, in ADL we

do not only reason about the size of a partial strategy, but
also about its inner dynamic structure.

Outline.
In Section 2, we define the logic ADL. We pay particular

attention to introducing the notions that are used to describe
schedules and partial strategies. In Section 3, we consider
some examples to provide more intuitions about the non-
trivial interplay of the schedules and the partial strategies.
We propose an algorithm to model check ADL-formulae
against ATSs with endpoints in Section 4 and show that the
model checking problem for ADL is PTime-complete. In
Section 5, we describe an application to cooperative game
theory capitalising on the notion of complexity of coordi-
nated coalitions. We discuss possible variants of ADL in
Section 6 and we conclude in Section 7.

2. ALTERNATING-TIME DYNAMIC
LOGIC

In this section we describe the logic ADL. We start with
introducing the syntax.

Definition 2.1. [ ADL Syntax] Let Π be a countably in-
finite set of atomic propositions and Σ a countably infinite
set of agents. A coalition is a finite set C ⊂ Σ of agents.
ADL-formulae ϕ and schedules R are simultaneously defined
with the following grammar, where p ranges over atomic
propositions and A ranges over coalitions of agents:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈R〉ϕ
R ::= ε | A | R � R | R; R | R∗ | ϕ?

Let R be the set of all schedules. �

Let R ∈ R be a schedule. For convenience, Rk with k > 0
denotes the sequence R; . . . ; R

| {z }

k

and R0 denotes the empty

schedule ε.

To transition smoothly to the semantics of ADL, we pro-
vide some intuitions about the language and some aspects
of the truth values of the operators.

The empty schedule ε will be interpreted as the strategy
with an empty domain. That is, it does not determine any
choice to be taken by the agents. Therefore, applying the
empty schedule does not yield any transition in the state
transition system. We will have that 〈ε〉ϕ ≡ ϕ.

An atomic schedule test ϕ? that is successful at a state
q (i.e., if ϕ is true in q) will be interpreted as the empty
schedule. That is, we assume that performing a test does
not involve any transition in the transition system S (upon
which the semantics will be based). The failure of ϕ? at q
(i.e., if ϕ does not hold in q), however, will be interpreted as
the absence of any strategy at q: we will note ΥS(ϕ?, q) = ∅.

An atomic schedule coalition A will give rise to a set of
strategies ΥS(A, q) at a state q in a transition system S.
Each such strategy σ determines a choice for every agent
in A and only for them. Moreover, such strategies will be
defined at q and only at q. A choice will be modelled as a
set of states. By taking a particular choice, an agent can
enforce the successor state q′ of the entire system to lie in
its choice. Moreover, an agent can prevent the system to go
into q′ by taking a choice that does not contain q′.
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Two schedules R1 and R2 can be executed sequentially
using the operator ‘;’. The schedule R1; R2 has the obvious
intended meaning that first a strategy for R1 and then strat-
egy for R2 is executed. The semantics of R1; R2 requires to
carefully combine the strategies resulting from R1 with the
ones resulting from R2. We will complete the partial strate-
gies resulting from R1 at q, with the ones resulting from R2

at the states reached from q (sequential completion). The
resulting strategies will be collected in the set ΥS(R1; R2, q).

Remark 2.2. The combination of partial strategies can
be done in more than one way. In this paper, we will define
this operation (Def. 2.4) such that the combined strategy does
not cause any infinite computation. This way, we make sure
that the length of a strategy mirrors the length of a schedule,
and a schedule can only give rise to strategies that terminate.
We will comment more on this issue in Section 6.

Finally, the compound schedule composed of the constructs
‘∗’ and ‘�’ should not pose a problem of interpretation.

Before we formally define the models of our logic, we in-
troduce some abstract notions that are going to be useful to
talk about alternating transition systems and partial strate-
gies within.

Let Q be a set of states in a system. A choice Q′ is a
non-empty subset of Q. Intuitively, a choice is a selection
of states that are candidates of system successor states. Let
Σ be the set of all agents in the system. State transitions
are determined by a transition function. A (Q, Σ)-transition

function is a function δ : Q × Σ → 22
Q

that maps a state q
and an agent a to the set δ(q, a) of choices that are available
to a at q (according to δ). A state q is called a δ-endpoint if
there is an agent without a choice at q (i.e. δ(q, a) = ∅ for
some a).

The notion of a choice is generalised to a group of agents
(collective choice) using a choice function. A choice function
for Q and Σ is a partial function κ : Σ → 2Q \ {∅} mapping
an agent a to a choice κ(a). A choice function κ is called
total if it is defined for all agents in Σ (i.e. dom(κ) = Σ).
That is, a total choice function represents a collective choice
of the grand coalition Σ. Clearly, if κ(a) is undefined (i.e.
a /∈ dom(κ)), then κ does not specify any choice for a.

A strategy σ is a (partial) mapping from a state q to a
choice function σ(q). Intuitively, σ prescribes the collective
choice σ(q) for the agents in dom(σ(q)) at q, where σ(q)(a)
is the choice made by agent a. We say that σ is undefined
at q if q /∈ dom(σ). Given a (Q, Σ)-transition function δ, a
strategy σ is a δ-strategy if

(i) if q ∈ dom(σ) and a ∈ dom(σ(q)), then σ(q)(a) ∈
δ(q, a); and

(ii) if q is a δ-endpoint, then σ(q)(a) is undefined for all
a ∈ Σ.

A δ-strategy σ is called complete if it determines total choice
functions exactly at all non-δ-endpoints. We are now ready
to introduce the models of ADL.

Formulae of ADL are evaluated in ATSs: A system is
modelled as a set of states Q together with a set Σ of agents
that populate the system, and a (Q, Σ)-transition function.
The latter accounts for superposing actions of agents. Addi-
tionally, each state is labelled with propositions representing
facts that hold at this state.

Notice, however, that in this paper, we consider struc-
tures that allow for endpoints. That is, these are not the
same structures that are used for Alternating-time Tempo-
ral Logic, which requires the system to be never-ending, i.e.,
at every state there must be an outgoing transition to a
successor state.

Definition 2.3. [Alternating Transition Systems with end-
points] Let Σ = {a1, . . . , an} ⊆ Σ with n ≥ 1 be a finite non-
empty set of agents. An ATS for Σ is a tuple S = 〈Π, Q, π, δ〉
where

• Π ⊆ Π is a finite, non-empty set of atomic proposi-
tions,

• Q is a finite, non-empty set of states,
• π : Q → 2Π is a valuation function which assigns to

every state a set of propositions which are true there,
and

• δ is a (Q, Σ)-transition function such that for every
complete δ-strategy σ, it holds that for all states q ∈ Q
that are not δ-endpoints, there is a state q′ ∈ Q such
that

\

a∈Σ

σ(q)(a) = {q′}.

�

Notice that the condition on the transition function states
that the entire system is deterministic: at each non-terminal
state, the collective choice of the grand coalition (one choice
for each agent), overlap in a singleton set containing the
unique successor state of the entire system.

It seems to suggest itself to consider endpoints in ATSs for
ADL, due to its similarity to PDL where the structures also
allow points without successors. In the context of Coalition
Logic, endpoints are a special case of the notion of terminal
states in weak playability structures as discussed in [6].

Given a schedule, we are now going to define what partial
strategies are triggered and what is their effectivity within
ATSs.

We assume a (Q, Σ)-transition function δ. Given a δ-
strategy σ, a state q′ is a σ-successor of a state q if there is
a complete δ-strategy σ′ that contains σ such that {q′} =
T

a∈Σ
σ′(q)(a). Note that σ′, as a complete strategy, pre-

scribes a total choice function at q (it specifies a choice for
each agent). Intuitively, q′ is a σ-successor of q if the col-
lective choice of the grand coalition can force the system to
go into q′ at q whilst respecting the choices prescribed in σ.
Clearly, q′ being a σ-successor of q implies that q is not a
δ-endpoint.

A state q′ is a δ-successor of q if q′ is a σ-successor of q
for some δ-strategy σ. Let Δδ,q be the set of all δ-successors
of q.

When q is not a δ-endpoint, a strategy σ is a (δ, q, A)-
strategy if

• σ is defined exactly at q, i.e. dom(σ) = {q}; and
• if A �= ∅ then dom(σ(q)) = A and σ(q)(a) ∈ δ(q, a);
• if A = ∅, the choice function σ(q) is defined as σ(q)(a) =

Δδ,q, for all a ∈ Σ.

The case A = ∅ needs some clarification. We expect to
have a system transition resulting of the choices of some
agents whenever a coalition is given to act in a schedule.
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This includes the empty coalition. However, we have no
agent that represent the empty coalition. Thus, we simulate
the choice of the empty coalition by making every agent
in Σ choose the vacuous choice Δδ,q selecting the set of δ-
successors of q. It can be noted that whenever A �= ∅, a
(δ, q, A)-strategy is a δ-strategy.

The set out(q, σ) of outcomes of a strategy σ starting at
a state q is the set of all states q′ ∈ Q for which there is
a finite path q0q1 · · · qm with m ≥ 0 such that q0 = q and
qm = q′, and one of the following conditions holds:

• qi+1 is a σ-successor of qi, for all positions i < m; and
• the choice function σ(qm) is undefined for all agents

a ∈ Σ.

Next we formalise how partial strategies are combined. In
this paper, we choose that combined partial strategies are
complementing each other without causing non-terminating
computations, cf. Remark 2.2. We define the operator ⊕ for
combining two partial strategies as follows.

Definition 2.4. [strategy combination] Let σ1 and σ2 be
two strategies in an ATS S such that

• σ1 and σ2 have disjoint domains of definition (dom(σ1)∩
dom(σ2) = ∅);

• there is no infinite path q0q1q2 . . . in S where qi+1 is
a σ1- or σ2-successor of qi, for all i ≥ 0.

Then σ1 ⊕ σ2 is defined as: For all states q in S,

(σ1 ⊕ σ2)(q) =

8

>

<

>

:

σ1(q) if q ∈ dom(σ1)

σ2(q) if q ∈ dom(σ2)

undefined otherwise

�

We denote with ΥS(R, q) the set of partial strategies for a
schedule R at a state q in the ATS S. Take a strategy σ1 ∈
ΥS(R1, q). For every schedule R2, we now define the set of
strategies that can be obtained by combining σ1 with one
strategy in ΥS(R2, q

′), for every state q′ that can be reached
by σ1 from q (i.e. q′ ∈ out(q, σ1)). Notice that, by using the
operator ⊕ from Definition 2.4, the resulting strategies will
not allow any looping computations. We collect this set of
strategies in completions(q, σ1, R2) defined as follows.

Definition 2.5. [strategy completion] Let σ1 be a partial
strategy starting at q, and let R2 be a schedule.

Set completions(q, σ1, R2) =
8

<

:

σ1

M

q′∈out(q,σ1)

σq′ | σq′ ∈ ΥS(R2, q
′)

9

=

;

�

We are ready to define the meanings of schedules and ADL

formulae by mutual induction.

Definition 2.6. [ ADL Semantics] Let Σ be a finite non-
empty set of agents and let S = 〈Π, Q, π, δ〉 be an ATS for
Σ. The set of partial strategies ΥS(R, q) for a schedule R
at a state q and the satisfaction relation |= are defined by
simultaneous induction as follows: Let q range over states
in Q, A over coalitions of agents and a over agents in Σ, R
over schedules in R, and ϕ, ϕ1, ϕ2 over ADL-formulae.

• S, q |= p iff p ∈ π(q) for all propositions p ∈ Π;
• S, q |= ¬ϕ iff S, q �|= ϕ;
• S, q |= ϕ1 ∨ ϕ2 iff S, q |= ϕ1 or S, q |= ϕ2;
• S, q |= 〈R〉ϕ iff there is a strategy σ ∈ ΥS(R, q) at

q such that for all states q′ ∈ out(q, σ), it holds that
S, q′ |= ϕ;

• ΥS(ε, q) = {σ}, where dom(σ) = ∅;
• ΥS(ϕ?, q) =

(

ΥS(ε, q) if S, q |= ϕ

∅ otherwise
;

• ΥS(A, q) = {σ | σ is a (δ, q, A)-strategy};
• ΥS(R1; R2, q) =

S

σ∈ΥS(R1,q)
completions(q, σ, R2);

• ΥS(R1 � R2, q) = ΥS(R1, q) ∪ ΥS(R2, q);
• ΥS(R∗; q) =

S

k≥0
ΥS(Rk, q).

If for some state q of some ATS S for Σ it holds that S, q |=
ϕ, then the ADL-formula ϕ is true at q, and S is called
a model of ϕ. An ADL-formula is satisfiable if it has a
model, and it is valid if it is true at all states in any ATS
for Σ. �

3. EXAMPLES
The following example illustrates in details the process of

evaluation of a simple schedule.

Example 3.1. Consider the ATS with endpoints
S = 〈Π, Q, π, δ〉.

s1

s3s2 s4

s5 s6 s7 s8 s9 s10

Let Q = {s1, . . . , s10}. For the matter of the example, the
important bits of the transition function are explicitly repre-
sented on the figure above and are as follows:

• δ(a, s1) = {{s2}, {s3, s4}}
• δ(b, s2) = {{s5, s6}}
• δ(b, s3) = {{s7}, {s8, s9}}
• δ(b, s4) = {{s10}}

Moreover, we assume δ(b, s1) = {{s2, s3}, {s2, s4}} and
δ(a, s2) = {{s5, s7}, {s6, s7}} and δ(a, s3) = {{s7, s8}, {s7, s9}}
and δ(a, s4) = {{s9, s10}}. δ is undefined otherwise. Π and
π are not relevant here.

The aim of the example is to construct the set of partial
strategies induced by the schedule {a}; {b} at the set s1, that
is, the strategies in ΥS(s1, {a}; {b}).

ΥS(s1, {a}) = {σa,1, σa,2} where σa,1(s1)(a) = {s2} and
undefined otherwise and σa,2(s1)(a) = {s3, s4} and unde-
fined otherwise. We have precisely out(s1, σa,1) = {s2} and
out(s1, σa,2) = {s3, s4}. It holds that:

ΥS(s1, {a}; {b}) =
S

σ∈{σa,1,σa,2} completions(s1, σ, {b}).
We need to find the completions of σa,1 and the comple-

tions of σa,2. We then proceed. Let σb1 such that σb1(s2)(b) =
{s5, s6} and undefined otherwise. The outcome of σa,1 is
uniquely s2 and b only has one strategy at s2, namely σb1 .
Hence, completions(s1, σa,1, {b}) = {σa,1 ⊕ σb1}.
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How about completions(s1, σa,2, {b})? Since out(s1, σa,2) =
{s3, s4} we have that the completions are the partial strate-
gies consisting in the completion of σa,2 with exactly one
(δ, s3, {b})-strategy plus exactly one (δ, s4, {b})-strategy.

We start with s4. At s4, b has only the choice {s10}, hence
the strategy σb,2 such that σb,2(s4)(b) = {s10} will always be
a brick of all the completions we are looking for.

Let us look at s3. Let σb,3(s3)(b) = {s7} and undefined
otherwise and let σb,4(s3)(b) = {s8, s9} and undefined oth-
erwise. They are the only two strategies of b at s3. Then,
for every completion either σb,3 or σb,4 is a constituent.

We can now define completions(s1, σa,2, {b}) = {σa,2 ⊕
σb,3 ⊕ σb,2, σa,2 ⊕ σb,4 ⊕ σb,2}

We can conclude that ΥS(s1, {a}; {b}) = {σa,1⊕σb1 , σa,2⊕
σb,3 ⊕ σb,2, σa,2 ⊕ σb,4 ⊕ σb,2}.
Example 3.1 makes clear how the schedules give rise to par-
tial strategies constructed from smaller chunks.

Now, we present another example to explain the role played
by the test operation.

Example 3.2. Consider the simple ATS with endpoints
S = 〈Π, Q, π, δ〉 such that Π = {p, q}, Q = {s1, s2, s3, s4},
δ(a, s1) = {{s1, s2}, {s3, s4}}, δ(b, s1) = {{s1, s3}, {s2, s4}}
and π(p) = {s3} and π(q) = {s1, s3}.

We want to evaluate the formula 〈A; p?〉q at s1.

ΥS(s1, {a, b}; p?) =
S

σ∈ΥS(s1,{a,b}) completions(s1, σ, p?)

There are four partial strategies in ΥS(s1, {a, b}). They
exhaustively yield every state in Q. We assume that from s1

every σi ∈ ΥS(s1, {a, b}) lead to si.
Since for every i ∈ {1, 2, 4} we also have that S, si �|= p,

we have ΥS(si, p?) = ∅. Hence, completions(si, σi, p?) =
∅. However, S, s3 |= p. Thus we have ΥS(s3, p?) = {σ}
such that dom(σ) = ∅. Clearly dom(σ3) ∩ dom(σ) = ∅ and
σ3 ⊕ σ = σ3.

Hence, we have ΥS(s1, {a, b}; p?) = {σ3}. It is also the
case that out(s1, σ3) = {s3} and S, s3 |= q.

So there is a strategy in ΥS(s1, {a, b}; p?) (viz. where a
chooses {s3, s4} b chooses {s1, s3}) and such that every out-
come (viz. s3) satisfies p. As a consequence we have S, s1 |=
〈{a, b}; p?〉q.

In Example 3.2, the interested reader can also check that
S, s1 |= 〈{a, b}〉p ∧ q. In fact, it is the case that in ADL,
〈{a, b}; p?〉q is equivalent to 〈{a, b}〉〈p?〉q, which in turn as
we have seen before is equivalent to 〈{a, b}〉(p ∧ q).

4. VERIFICATION
In this section, we present a model-checking algorithm

for ADL. The model-checking problem for ADL is, given an
ADL-formula ϕ and an ATS S = 〈Π, Q, π, δ〉 with endpoints
for Σ, to compute the extension [[ϕ]]S of ϕ in S, where [[ϕ]]S
is the set of states in S that all satisfy ϕ. For computing
the extension of a formula, we employ a modified version
of the symbolic model-checking algorithm for ATL from [4].
The algorithm recursively computes, for each subformula ψ
of ϕ, its extension [[ψ]]S in S. For computing the exten-
sion of formulas of the form 〈R〉ψ, we employ a modified
pre-image operator PreS that can operate with schedules on
ATSs. Then the function PreS yields the extension of 〈R〉ψ
when called with the parameters R and [[ψ]]S . Recall that
schedules are regular expressions over coalitions and tests.

1. function [[ϕ]]S returns a set of states in S
2. case ϕ = p: return {q ∈ Q | q ∈ π(p)}
3. case ϕ = ¬ψ: return Q \ [[ψ]]S
4. case ϕ = ψ ∨ θ: return [[ψ]]S ∪ [[θ]]S
5. case ϕ = 〈R〉ψ: � = PreS(R, (ε, [[ψ]]S , NIL))

6. return Q′, where � = (·, Q′, ·)
7. end-function

Figure 1: Extension function

As tests range over ADL-formulas, the function PreS is com-
puted by simultaneaous recursion together with the function
computing the extension [[·]]S . Figure 1 presents the algo-
rithm computing [[·]]S and Figure 2 the algorithm computing
PreS .

Consider the algorithm computing the function [[·]]S . The
algorithm takes as input an ADL-formula and an ATS with
endpoints. The Lines (2), (3) and (4) in Figure 1 cover the
base case of propositional variables and the Boolean cases.
Lines (5) and (6) deal with formulas of the form 〈R〉ϕ by
calling the function PreS . This function accepts two param-
eters: a schedule and a data structure. The data structure
is a linked list, which is initialised using [[ϕ]]S . The role of
the linked list will be explained below. Then PreS yields the
set of states from which R can be executed to ensure that
all outcome states satisfy ϕ.

The algorithm in Figure 2 has five cases, one for each
schedule operator; cf. the definition of schedules in Defini-
tion 2.1. Lines (2) to (5) cover the base case where the sched-
ule is a coalition. The set ρ computed in Line (3) contains
the states at which there is an A-choice that lies inside Q′.
In Line (4), the set of ‘looping states’ is computed by calling
the function loop-statesS in Figure 3, and subsequently this
set is removed from ρ. With ‘looping states’ we mean states
that necessarily give rise to self-loops when certain linear
schedules are executed at them. Note that rejecting looping
states corresponds to the semantics of ADL. The function
completions in Definition 2.5 is responsible for constructing
complex strategies for sequentially composed schedules. Ob-
serve that completions does not yield any strategy which al-
lows for looping paths.

Lines (6) and (7) in Figure 2 cover the other base case
where the schedule is a test ψ?. Here a cross function call
[[ψ]]S is made to compute the extension of ψ?. Lines (8)
to (13) cover the cases for complex schedules with choice
and sequential composition as topmost operator. Here the
application of PreS follows the semantics in a straightfor-
ward way. The notation in Lines (8), (9) and (18) is used
for convenience. That is, each dot in the expression (·, Q1, ·)
means that at this point we do not care about the value of
the component of the tuple. The remaining lines cover the
last case where the input schedule is S∗. Here the control
structure is similar to the one of the until-case in the model
checking algorithm for ATL. The set ρ contains the set of
states at which the schedule S can be executed n times, for
any n ≥ 0. The set ρ is initialised as empty set in Line (15).
The following while-loop in Lines (16) to (19) successively
adds more states to ρ until a least fixpoint is reached, i.e.,
until no more states are added. Finally, Line (20) returns
the result.

The function PreS takes a linked list together with a coali-
tion as argument and returns a linked list. A linked list is
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1. function PreS(R, �) with � = (C, Q′, �′) returns a linked list

2. case R = A:

3. ρ = {q ∈ Q | Δ ⊆ Q′ for some A-choice Δ at q}
4. ρ = ρ \ loop-statesS(A, ρ, ε, �)

5. return (A, ρ, �)

6. case R = ϕ?:

7. return (ε, [[ϕ]]S ∩ Q′, NIL)

8. case R = R1 	 R2:

9. (·, Q1, ·) = PreS(R1, �)

10. (·, Q2, ·) = PreS(R2, �)

11. return (ε, Q1 ∪ Q2, NIL)

12. case R = R1; R2:

13. return PreS(R1, PreS(R2, �))

14. case R = S∗:

15. ρ = ∅
16. while Q′ �⊆ ρ do

17. ρ = ρ ∪ Q′

18. � = (·, Q′, ·) = PreS(S, �)

19. done

20. return (ε, ρ, NIL)

21. end-function

Figure 2: Pre-image function

1. function loop-statesS(A, Q′, R, �) returns a set of states in S
2. case � = NIL:

3. return ∅
4. case � = (C, QC , �′):
5. ρ = {q ∈ Q′ ∩ QC | q ∈ Δ for all A; R-choices Δ at q}
6. return ρ ∪ loop-statesS(A, Q′, R; C, �′)
7. end-function

Figure 3: Function to compute ‘looping states’

an ordered list that is used to ensure the uniform execution
of schedules at states. Each element of a linked list con-
tains a set of states together with a coalition and a pointer
to the successor element. The pointer has the value NIL
if no successor element exists. The use of a linked list is as
follows: Let 
 = (A, QA, 
′) and 
′ = (ε, Qϕ, NIL), where

 is a linked list of length two, and 
′ is one of length one.
The set QA contains states q at which there is an A-choice
that lies inside the set Qϕ, which is the extension of ϕ in S.
That is, we have S, q |= 〈A〉ϕ.

Figure 3 presents the algorithm that computes the func-
tion loop-statesS . It takes a coalition A, a set of states Q′,
a schedule R, and a linked list 
 as arguments. The func-
tion returns a set of ‘looping states’. A state q is a looping
state wrt. R if for every strategy σ ∈ ΥS(R, q), it holds that
q ∈ kn(σ, q). Each computed looping state is contained in
Q′ ∩ Qi, for i = 1..n − 1, where Q1, . . . , Qn are the sets of
states stored in this order in 
.

The fact that PreS operates on schedules and the simulta-
neous recursion of this function with [[·]]S does not affect the
complexity of the model-checking algorithm. That is, ADL

model-checking is no more complex than that for ATL [4].
Moreover, the problem of model-checking ADL trivially con-
tains the problem of model-checking Coalition Logic [7].

Theorem 4.1. The model-checking problem for ADL is
PTime-complete.

5. APPLICATION
We informally explain how ADL can help at optimising

the coalition structures within a multi-agent system.
In cooperative game theory, coalitions are allowed to form

and disassemble depending on the incentives of the individu-
als and on the effectivities of the coalitions. There are three
activities of coalition formation that are interconnected. (i)
Generating the coalition structure, that is deciding who is
going to act together. (ii) Solving the optimisation problem
of each coalitions. The coalition objective is to maximise
their utility: the utility received from the system minus the
cost of using resources. (iii) Dividing the value of the activ-
ity of coalitions.

Coalition formation can be studied using a characteris-
tic function (e.g., [9]). A characteristic function maps every
coalition A to a value v(A) ∈ R, which represents the perfor-
mance of this coalition. A value of a coalition A is assumed
the same whatever how the players outside A are teamed
up. This common assumption is problematic, though. For
instance a large monopolistic coalition competing only with
a number of small coalitions may perform better than if they
are competing within an oligopoly against a few other large
coalitions. A more general model is then based on partition
functions and allows to model these particular externalities
(e.g., [8]). The performance of a coalition also depends on
the other coalitions. The value of a coalition depends on the
coalition partition.

Coordinated coalitions as introduced in this paper are an-
other generalisation. It allows to lift the study of coalitional
games from coalitions (which coalition should an agent join
in order to maximise her utility) to scheduled coalitions
(which coalition should an agent join and under which agree-
ment about how to coordinate).

Such concepts are of primary importance in the study of
organisations where agents form coalitions upon their utility
to be part of a particular group, interacting with respect to
a precise procedural contract. An agent will joint a coordi-
nated coalition if it helps her out to achieve her goals and
that she only has to provide a reasonable workload.

We now see how ADL can be regarded as an appropriate
framework for the formal analysis of the problem of optimi-
sation. The next example illustrate how ADL model check-
ing can be used as a semi-automatic method of optimising
the coordination of a coalition within a system.

Example 5.1. Suppose that the activity of a startup com-
pany is conceptualised by a pointed model M (as an ATS or
Reactive Modules [3]). The employees of the company are a,
b and c. The goal of the company is to reach a good quality
of production (noted good) within thirty days. Their goal
is then to maintain the quality for two years (735 days) and
sell the company for a good price (noted windfall) to a large
holding company for instance. They can verify that they are
able to do so: M |= 〈{a, b, c}30; (good?; {a, b, c})735〉(good ∧
windfall).

However, they realise that they can be more efficient: M |=
〈{a, b, c}30; ((good?; {a, b, c})6; ∅)105〉(good ∧ windfall). Af-
ter one month, they all can have a day off every week and
still make a good production.1

1The formula also capture the fact that the good quality of
production will not be ensured at the resting day.
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Even better: M |= 〈{a, b, c}30; ((good?; ({a, b} � {a, c} �
{b, c}))6; ∅)105〉(good∧windfall). Six days a week, they can
work in teams of two, and all can rest the seventh day, still
making good product.

Finally, they figure out that their first goal to sell the com-
pany after two years is in fact pessimistic, as they could ob-
tain a good price in about 20 months (88×7 = 616 days) af-
ter the initial month, provided they work constantly together
five days a week: M |= 〈{a, b, c}30; ((good?; {a, b, c})5; ∅2)88〉
(good ∧ earlywindfall).

From a modelling perspective, we need a method to gen-
erate the value of each coalitions. In coalitional games, this
is often considered given in the input of the problem. But
this is not satisfying from a practical point of view. In [10]
for instance, the proposed model takes into account the cost
of computation in terms of CPU cycles.

In our situation, the performance of a coalition can be cor-
related to a positive and a negative value that respectively
depends on (i) the effectivity of the coordinated coalition to
achieve some states preferred by the members of the coali-
tion (ii) and the resource consumption of the coordinated
coalition.

Concerning (i), we will need to introduce the preferences
of the agents in the framework. This is beyond the scope of
this paper. However, ADL provides the adequate formalisa-
tion to reason about effectivities of coordinated coalitions.
For this reason we focus our attention to (ii). The cost of
resources consumption may well be regarded as a function
of the complexity of the coordinated coalition: length of the
schedule, workforce used at every step, etc.

In Example 5.1 we kept this notion of complexity of a
coordinated coalition rather abstract. The next example
illustrates a possible notion of schedule complexity.

Example 5.2. We consider a unit of production that is
common in project management: man-day. The costs of the
different schedules are as follows:

• 1st schedule: (30 × 3) + (3 × 735) = 2295 man-days;
• 2nd schedule: (30×3)+((6×105)∗3) = 1980 man-days;
• 3rd schedule: (30 × 3) + ((6 × 105) × 2) = 1350 man-

days;
• 4th schedule: (30×3)+((5×88)×3) = 1410 man-days.

The first, second and third schedules have the same length
(schedule three is non deterministic but only produces sched-
ules of fixed length). As such, the third schedule is arguably
the most ‘desirable’ among them. They are somewhat in-
comparable with the schedule four. Even though the cost of
schedule four is greater than the cost of the third schedule,
the fourth schedule still appears appealing. Their respec-
tive desirability will depend on the preferences of the agents
regarding windfall and earlywindfall.

We would need to introduce for the agents a simple opera-
tor of preference. Similar work exist in logics of multi-agent
ability (see [1] or [11]) and could be a source of inspiration.
There is no reason for it to be problematic. However, though
needed it may be more challenging to introduce group pref-
erences. This is a non-trivial problem and a hot topic in
social choice theory [5].

Concerning the ‘negative correlation of desirability’ it is
still not clear what should be the cost of a schedule in

general. The measure of complexity of a schedule may be
particularly difficult to characterise when we consider non-
deterministic schedules involving ‘∗’ and ‘�’ since they can
lead to schedules of very different length.

6. DISCUSSION
Axiomatisation.

An axiomatisation can help to clarify the relationship of
ADL with other logics like CL, ATL and PDL.

(TAUT) Propositional tautologies

(Sequence) 〈R1; R2〉ϕ → 〈R1〉〈R2〉ϕ
(Choice) 〈R1 	 R2〉ϕ ↔ 〈R1〉ϕ ∨ 〈R2〉ϕ
(Star) 〈R∗〉ϕ ↔ ϕ ∨ 〈R; R∗〉ϕ
(Test) 〈ψ?〉ϕ ↔ ψ ∧ ϕ

(Ind) 〈R∗〉ϕ → ϕ ∨ 〈R∗〉(¬ϕ ∧ 〈R〉ϕ)

(⊥) ¬〈A〉⊥
(Σ) ¬〈∅〉¬ϕ → 〈Σ〉ϕ
(S) (〈A〉ϕ ∧ 〈B〉ψ) → 〈A ∪ B〉(ϕ ∧ ψ)

when A ∩ B = ∅

(Modus Ponens)
ϕ, ϕ → ψ

ψ

(¬〈A〉¬-Necessitation)
ϕ

¬〈A〉¬ϕ

(〈R〉-Monotonicity)
ϕ → ψ

〈R〉ϕ → 〈R〉ψ

Figure 4: Axiom scheme for ADL.

Figure 4 presents a candidate axiomatic system for ADL.
As the ‘next fragment’ of ATL, it is straightforward that

ADL is an extension of Coalition Logic. As such, the ax-
iomatisation of CL is an obvious starting point. The axioms
(TAUT), (⊥), (Σ) and (S), and the inference rules (Modus
Ponens), and (〈R〉-Monotonicity) are principles of Coalition
Logic.

Analogously, ADL has a lot in common with PDL. (Se-
quence), (Choice), (Star), (Test), (Ind) and
(¬〈A〉¬-Necessitation) are inspired from PDL. However, there
are some little yet important differences. In PDL, the direc-
tion from right to left of the axiom (Sequence) holds. This
is not the case here. For this reason, we rewrote the ax-
iom (Star) in a ‘safe’ way (the direct adaptation from PDL

would be 〈R∗〉ϕ ↔ ϕ ∨ 〈R〉〈R∗〉ϕ, which does not hold.)
As yet, we do not say anything about the completeness of

the axioms of Figure 4.

Memoryless vs. perfect recall strategies.
In this paper, we have assumed memoryless strategies:

the domain of a strategy is Q. Alternatively, we can define a
perfect recall strategy at q0, as a strategy whose domain is the
set Q+ = {q0 · · · qk | ∃σ, qi+1is a σ-successor at qi} of all
state sequences. In this situation, the agents can take their
strategic decisions based on a perfect view on the past. In
fact, working with perfect recall strategies is like restricting
the ATSs to the class of tree-like ATSs. For ATL, it is
known that it does not affect the logic. In ADL, however,
there are satisfiable formulae that are not satisfiable in a
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tree-like model. The formula 〈A〉〈B〉p ∧ ¬〈A; B〉p is one
of them. Interestingly, the logic ADL on tree-like ATSs
satisfies the right-to-left direction of the axiom (Sequence).
ADL restricted to the class of tree-like ATSs then satisfies all
the theorems of PDL. As a consequence, ADL with perfect
recall strategies is a proper extension of both Coalition Logic
and PDL. Moreover, this extension is conservative if the
axiom system is complete for the class of tree-like ATSs.

Further variants.
As already mentioned in Remark 2.2, there are several

ways of combining partial strategies. Each way conveys a
very different interpretation of partial strategies. Which
combination method is more appealing or suitable depends
on the requirements and on the application at hand.

In Definition 2.4, we defined the operator ⊕ that combines
two partial strategies provided they satisfy two conditions:
they are disjoint, and they complement each other without
causing infinite computations. That is, when using ⊕, we
obtain strategies for a schedule that only allow computa-
tions of the same length as the length of the schedule. As a
consequence, in this ADL-variant, no schedule gives rise to
a non-terminating computation.

For an alternative strategy combination, we need to re-
define ⊕. For instance, we could relax the conditions on
partial strategies by allowing them to overlap and the com-
bined strategy to cause infinite computations. Instead, we
impose as condition that the partial strategies are not con-
flicting, i.e., they determine the same choice functions at
points of overlap.

Definition 6.1. [relaxed strategy combination] Let σ1 and
σ2 be two strategies in an ATS S such that σ1 and σ2 are
not conflicting (σ1(q) = σ2(q), for all states q ∈ dom(σ1) ∩
dom(σ2)). Then σ1 ⊕′ σ2 is defined as: For all states q in S
and all agents a in Σ,

(σ1 ⊕′ σ2)(q)(a) =

8

>

<

>

:

σ1(q)(a) if a ∈ dom(σ1(q))

σ2(q)(a) if a ∈ dom(σ2(q))

undefined otherwise

�

Another variant relaxes the condition even further and al-
lows partial strategies to prescribe different but consistent
choice functions. Formally, σ1 and σ2 can be combined if
σ1(q)(a) = σ2(q)(a), for all states q ∈ dom(σ1) ∩ dom(σ2)
and all agents a ∈ dom(σ1(q)) ∩ dom(σ2(q)). This strat-
egy combination would refine choice functions. We see this
method to be suitable for concurrent schedules.

A more incisive change of the semantics is achieved by
employing non-deterministic strategies. Such strategies may
prescribe a number of choices for an agent at a state. The
strategy combination would then facilitate the addition of
alternative choices. Analogously, one could think of the
possibility to remove choices or to exclude agents from the
coalition. The latter features, however, are likely to require
additional schedule operators in the syntax of the language,
whereas the former variations were purely semantic.

7. CONCLUSION
In this paper, we have proposed a logic reminiscent of

Propositional Dynamic Logic and Coalition Logic, but also
Alternating-time Temporal Logic. The language is similar

to PDL, but we interpret atomic programs as coalitions, and
compound programs as coordinated coalitions. The logic re-
stricted to atomic programs trivially corresponds to Coali-
tion Logic.

We have seen in the previous section that there are more
than one way to interpret the strategies triggered by co-
ordinated coalitions. We have chosen to offer a preliminary
analysis of the framework by focusing on memoryless strate-
gies that cannot cause a loop. We have shown that in this
situation, the model checking problem is Ptime-complete.
Moreover, we have seen that in the case of perfect recall
strategies, the logic results in a proper extension of PDL

and CL.
In the future, we plan to investigate thoroughly the differ-

ent possible variants of ADL. We can change the interpre-
tation of strategies, and we can augment the language with
program constructs that have already been studied in PDL.
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[2] T. Ågotnes and D. Walther. A logic of strategic ability
under bounded memory. J. of Logic, Lang. and Inf.,
18(1):55–77, 2009.

[3] R. Alur, L. de Alfaro, T. A. Henzinger, S. Krishnan,
F. Mang, S. Qaader, S. Rajamani, and S. Taşiran.
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